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Clustering is well known to play a prominent role in the description and understanding of complex networks,
and a large spectrum of tools and ideas have been introduced to this end. In particular, it has been recognized
that the abundance of small subgraphs is important. Here, we study the arrangement of triangles in a model for
scale-free random graphs and determine the asymptotic behavior of the clustering coefficient, the average
number of triangles, as well as the number of triangles attached to the vertex of maximum degree. We prove
that triangles are power-law distributed among vertices and characterized by both vertex and edge coagulation
when the degree exponent satisfies 2���2.5; furthermore, a finite density of triangles appears as �=2
+1/3.
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Graph representation is extensively used in many
branches of science in order to reduce the complexity of
systems whose components have pairwise interactions and
where distance is irrelevant. One associates the components
of the system with the vertices of a graph and connects two
of them by an edge whenever a given property holds. It has
turned out that real-world networks, ranging from biology to
physics, display common topological features and, impor-
tantly, their degrees, power-law distributed �i.e., the number
of vertices with k edges goes as k−� for some ��2, called
the degree exponent�, reflect the presence of self-organizing
phenomena underlying their architecture �1�. Owing to their
power-law degree distribution such networks are usually re-
ferred to as scale-free networks �2�, i.e., with no intrinsic
characteristic degree.

A number of models reproducing some of the features of
complex networks have been proposed, for example, �2–7� to
cite a few. In this work we focus on a model for power-law
random graphs �8� giving good insight into the clustering
properties. We demonstrate that triangles coagulate into clus-
ters and, in contrast to classical models for random graphs
�see �9� for a review�, they are power-law distributed: the
probability for a randomly selected vertex to participate in t
triangles goes as �t−�1+��/2, with � being the degree expo-
nent. This scaling relation suggests that triangles might be
regarded as a fundamental element for the characterization of
real-world networks.

Our motivation resides in the recent attention devoted to
the occurrence of small subgraphs, or motifs, in scale-free
networks. It has been observed �10,11� that some motifs are
overrepresented in real-world networks as compared to ran-
domized networks with the same degree distribution. Usually
the triangle is the building block of most motifs and for
random regular graphs it has been remarked �12� that when
one imposes a finite density of triangles, they have the ten-
dency �i.e., higher probability� to organize themselves into
complete subgraphs. Surprisingly, this phenomenon is more
likely when the imposed density of triangles is small.

Our interest in triangles is also motivated by their inter-
play with a simple transitivity relation and the fact that the
clustering coefficient can be used for breaking graphs up into
clusters carrying coherent information. The clustering coef-

ficient for a given vertex i with degree ki is defined as �3�
Ci=2ti / �ki

2−ki�, ti being the number of triangles attached to
vertex i. Clusters are obtained by fixing a threshold value and
removing all vertices, and edges incident to them, with Ci
falling below it. This scheme was applied to detect interest
communities in the World Wide Web �13�, which turned out
to be strongly affected by the presence of colinks. This
means that double edges with opposite direction are part of a
triangle with high probability, in line with findings in �11�,
and thus emerge as the basic unit of transitivity. A similar
approach has also been employed to organize lexical infor-
mation into semantic classes in order to differentiate mean-
ings of ambiguous words �14�. Furthermore, related lines of
research �15–21� have stressed the importance and the abun-
dance of cycles �or loops� in scale-free networks.

The model. The best known model for random graphs is
the Erdös-Rényi model G�n , p� in which every graph consists
of n vertices and each pair is connected by an edge with
uniform, independent probability p. The topology of such
graphs, however, shows marked deviations from that ob-
served in real-world networks. For instance, if p=O�n−1� the
degrees are Poisson distributed, that is, the probability for a
randomly selected vertex to have k edges is given by �9,22�
P�k�= ��k /k!�e−�, where � is the average degree; further-
more, triangles are almost surely �i.e., with probability equal
to one in the asymptotic limit� both edge and vertex disjoint.

Here, we investigate a generalization of the Erdös-Rényi
model which exhibits a power-law degree distribution. In our
analysis we shall follow closely Refs. �8� to which we refer
the reader for more details.

So, consider the set of random graphs G�w� in which ev-
ery graph is specified by the average degree sequence w
= �w1 , . . . ,wn� arranged in decreasing order: w1�w2� ¯

�wn. Two vertices i and j are connected with probability
pij =wiwj /�lwl=�wiwj, where 1/�=�l=1

n wl. Importantly, by
setting

wi = c�i + i0�−1/��−1� �1�

the number of vertices with degree k turns out to be propor-
tional to k−�, and as a result the degrees are power-law dis-
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tributed with degree exponent �. The constants c and i0 ap-
pearing in Eq. �1� are determined by the average degree d
and the maximum degree m. For ��2 one finds �8�

c = d
� − 2

� − 1
n1/��−1� and 1 + i0 = n� d

m

� − 2

� − 1
��−1

.

Probability normalization requires that m2��−1, and so m
�d1/2n1/2. In this model the average degree d is a free pa-
rameter and in the following we will assume that d�1; as a
consequence, the maximum degree scales with n as

m � n� and 0 � � �
1

2
. �2�

Remark that � can be chosen independently of �. Yet, an-
other quantity of interest is the second-order average degree

d̃=��iwi
2, in terms of which we shall express most of our

results. In the asymptotic limit we have �8�

d̃ =	
d

�� − 2�2

�� − 1��3 − ��
m

d

�� − 1�
�� − 2��3−�

if 2 � � � 3

d

2
log�2m

d
� if � = 3

d
�� − 2�2

�� − 1��� − 3�
if � � 3,

�
�3�

making apparent the existence of three different regimes as a
function of the degree exponent.

Results. The average number of triangles ti attached to
vertex i is ti=� j�k j�i k�ipijpjkpki. This sum may be rear-
ranged as

ti =
1

2
�wi

2
�2�
j,k

wj
2wk

2 − �2�
l

wl
4 − 2wi

2�2�
l

wl
2 + 2�2wi

4� .

�4�

In all regimes the leading term arises from the first �double�
sum in the right-hand side of the above expression. We find

that ti /wi
2=�d̃2 /2 is of order O�n−1m2�3−��� if 2���3, of

order O(n−1�log n�2) if �=3, and of order O�n−1� if ��3.
Neglected terms are at most of order O�n−1m3−�� if 2��
�3, at most of order O�n−1� if �=3, and at most of order
O�n−1m3−�� if ��3 �23�. It readily follows that in the
asymptotic limit the average clustering coefficient of vertex i
reads

Ci =
2ti

wi�wi − 1�
=

��d̃wi�2

wi�wi − 1�
= ��d̃�2�1 + O�wi

−1�� ,

and for sufficiently large values of wi this can be regarded as
independent of the degree of the anchor vertex. Ci can be
interpreted as the probability that two neighbors of a vertex
of degree wi are joined together by an edge. By making use
of Eqs. �2� and �3� one finds how the clustering coefficient
scales with the number of vertices n in the asymptotic limit.
The average number of triangles attached to the vertex of

maximum degree is simply given by t1=��d̃m�2 /2. The re-

sults in the asymptotic limit are summarized in Table I.
The average number of triangles T is obtained by calcu-

lating

T =
1

3�
i

ti =
1

3!
�d̃�3 − 3d̃�2�
l

wl
4 + 2�3�

l

wl
6� .

As before, the dominant term arises from the first term in the

right-hand side of the above expression, d̃3 /3!, of order
O�m3�3−��� if 2���3, of order O(�log n�3) if �=3, and of
order O�1� if ��3. The other ones are at most of order
O�m2�3−��� if 2���3, at most of order O�log n� if �=3,
and at most of order O�m3−�� if ��3 �24�. The asymptotic
behavior of T as a function of m and n for the different
regimes is also shown in Table I.

We next address the question of how triangles are distrib-
uted over the graph. Starting from Eq. �4� a simple calcula-
tion proves that the probability for a randomly selected ver-
tex to participate in t triangles goes as

P�t� � t−	 with 	 =
1 + �

2
, �5�

and thus triangles are power-law distributed among vertices.
Discussion. Some remarks on Table I are in order. We see

that irrespective of the choice of �, Eq. �2�, the clustering
coefficient remains a decreasing function of n for ��2, that
is always smaller than 1, and thus it preserves its probabilis-
tic interpretation. The number of triangles always diverges
with n in the range 2���3, corresponding to the regime
observed in real-world networks �see �1� for examples�; if
instead ��3 then there are a finite number of triangles, as in
the Erdös-Rényi model. From Table I we can also see that
�=1/2 seems to be a natural choice, and hence we set �
equal to this value from here on.

Equation �5� is our main result. This scaling relation tells
us that with non-negligible probability some vertices partici-
pate in a large number of triangles, which implies that they
are not scattered over the whole graph, as in the Erdös-Rényi
model, but coagulate around some vertices. Further under-
standing of such a phenomenon can be gained by studying

the inequality ti�wi /2, leading to i�O�1�
n�d̃2 /n��−1− i0.
Triangles start sharing a common edge when �n / i0�

 �d̃2 /n��−1 is at least of order O�1�, that is, for 2���2.5.

TABLE I. Asymptotic behavior of the clustering coefficient, C,
the average number of triangles, T, and the number of triangles
attached to the vertex of maximum degree, t1, as a function of the
degree exponent �. Recall that m�n� with 0���1/2.

2���3 �=3 ��3

C �m2�3−��n−1 ��log m�2n−1 �n−1

T �m3�3−�� ��log m�3 ��

t1 �m2�4−��n−1 �m2�log m�2n−1 m2n−1
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Furthermore, the number of vertices at which edge coagula-
tion occurs goes as n−��−�−���−�+�+O�n�3−��/2� with �±

= �3±5� /2.
Note that as � approaches 2 the vertex of maximum de-

gree sees around itself a tightly connected cloud since the
clustering coefficient is close to being constant, whereas for
��3 triangles are sparse in its neighborhood. In contrast, by
looking at the fraction of triangles attached to it, that is

t1

T
� 	n��−3�/2 if 2 � � � 3

�log n�−1 if � = 3

�� if � � 3,
�

we deduce that triangles are spread over the graph for 2
���3, and essentially centered around the vertex of maxi-
mum degree otherwise. Another quantity of interest is the
density of triangles, namely T /n�n3�2−��/2+1/2 for 2���3,
and as �=2+1/3 we have a finite density of triangles.

Simulations have been performed in order to study the
scaling relation of Eq. �5� as a function of �. Figure 1 illus-
trates the results for �=2.2. Points obtained from simulations
clearly follow a power law with a cutoff as t approaches t1
�56; the measured exponent 	m is in accordance with the
theoretical value. Table II shows the results for other values
of �. Finite-size effects are more marked as � approaches 3.
The reason is that the number of triangles and, in particular,
t1, which determines the cutoff, increase with n at a slower
rate �see Table I�. In that respect it is worth noticing that for
�=2.2 and n=2
104 vertices we have m�141 and t1�56,
and edge coagulation does not occur since t1�m /2 does not
hold. This is a finite-size effect since for n=107 vertices we
would have m�3162 and t1�4033, and the condition for
edge coagulation is fulfilled. To make this point clearer we
have investigated numerically t1 as a function of n; the re-

sults are shown in Fig. 2 and we see a good agreement be-
tween simulations and theoretical predictions in the different
regimes. Obviously, the power-law behavior breaks down in
the presence of a small, finite number of triangles on aver-
age, i.e., ��3.

We point out that the coagulation phenomenon reported in
�12� and the one investigated here are of quite a different
character. Specifically, in regular graph models the number
of graphs with a finite density of triangles is small and cor-
respond statistically to graphs obtained by placing triangles
so that to construct the largest complete subgraph. Con-
versely, in power-law random graphs it turns out that tri-
angles are significant on average and display statistical regu-
larities. The common feature is that as topology departs from
a certain degree of randomness it gives rise to a pressure
towards clustering and triangles arrange themselves accord-
ingly.

It is possible to make contact with models making use of
fitness variables. In Refs. �7,25� two vertices i and j are

FIG. 1. The number of vertices participating in a given number
of triangles as obtained from simulations for �=2.2. The number of
vertices in graphs is set to n=2
104, the maximum degree to m
=n, and the average degree to d= ��−1� / ��−2�. Averages are
taken over 200 realizations and the scale of axes is logarithmic. The
linear fit yields 	m=1.71±0.02. For other values of � the results are
summarized in Table II. Inset: The degree distribution P�k�. The
solid line has slope −2.29±0.02.

TABLE II. The exponent characterizing the distribution of tri-
angles among vertices, Eq. �5�, resulting from simulations as a
function of the degree exponent �. Here 	m and 	t denote the mea-
sured and theoretical values, respectively.

� 2.2 2.3 2.5 2.8

	m 1.71±0.02 1.83±0.04 2.05±0.05 2.5±0.13

	t 1.6 1.65 1.75 1.9

FIG. 2. The dependence of t1, the average number of triangles
attached to the vertex of maximum degree, on n, the graph size, as
obtained from simulations for �=2.2 �circles� and 2.5 �squares�.
Comparison is made with the theoretical prediction t1=��d̃m�2 /2
�solid lines�. As before d= ��−1� / ��−2� and m=n; averages are
taken over 200 configurations and the scale of axes is logarithmic.
The linear fit yields a slope of 0.71±0.01 for �=2.2 and of
0.48±0.01 for �=2.5; the theoretical value is given by 3−� �cf.
Table I�. The dashed line corresponds to t1=n /2 marking the tran-
sition to edge coagulation. Notice that for �=2.5 there is no edge
coagulation, whereas for �=2.2 there is; indeed, points obtained
from simulations cross the dashed line. Inset: t1 as a function of n
for �=3 �triangles� and 3.4 �diamonds�. Solid lines correspond to
the theoretical predictions.

RANDOM GRAPH MODEL WITH POWER-LAW … PHYSICAL REVIEW E 72, 025103�R� �2005�

RAPID COMMUNICATIONS

025103-3



connected with probability f�xi ,xj�, where xi and xj denote
the intrinsic fitness of i and j, respectively. Fitness of vertices
is distributed according to h�x�. Within this model the num-
ber of triangles attached to a vertex of fitness x is

t�x� =
n2

2
�

0

�

f�x,y�f�y,z�f�z,x�h�y�h�z�dydz =
n2

2
G�x� .

It follows that the probability for a randomly selected vertex
to participate in t triangles can be written as

P�t� = h
G−1� 2t

n2�� d

dt
G−1� 2t

n2� .

The statistical properties of graphs arise from the choice of f
and h and one can prove that for a particular choice this
model is equivalent to the one studied here. We leave a de-
tailed discussion to a future publication.

A generalization of the model investigated here would
consist in implementing a nontrivial dependence of the clus-
tering coefficient on the degree. Note, however, that the
mechanisms responsible for clustering are basically the
same, and in the case of a clustering coefficient decreasing
with the degree k as C�k−� we have P�t�� t−�1+�−��/�2−��. We
address the reader to Ref. �26� for a study of the presence of

this scaling relation in biological networks. The purpose of
�26� was to establish a duality between large-scale topologi-
cal organization and local subgraph structure in empirical
networks. Our analysis differs from �26� in that we have
dealt with a probabilistic model allowing for a rigorous treat-
ment of the asymptotic limit, but this is done at the expense
of generality. Note that random growth processes have been
investigated within the framework of the same ideas in �27�.

To summarize, in this work we have presented the study
of a random graph model and derived the asymptotic behav-
ior of some quantities describing the clustering properties,
coming to the conclusion that they are characterized by three
regimes �Table I�. The picture that emerges is that as the
degree exponent � decreases the number of triangles in-
creases and the triangles arrange themselves into graphs so
as to create tightly connected cores around vertices of pro-
gressively smaller degree, resulting in a power-law distribu-
tion, Eq. �5�. This is what we refer to as coagulation of
triangles. In itself, this phenomenon dictates the abundance
of recurring small patterns in the graphs.
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